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Oxytocin (OXT) is a hypothalamic neuropeptide composed of nine amino acids. The functions of OXT cover a variety of social and
nonsocial activity/behaviors. Therapeutic effects of OXT on aberrant social behaviors are attracting more attention, such as social
memory, attachment, sexual behavior, maternal behavior, aggression, pair bonding, and trust. The nonsocial behaviors/functions
of brain OXT have also received renewed attention, which covers brain development, reproduction, sex, endocrine, immune
regulation, learning and memory, pain perception, energy balance, and almost all the functions of peripheral organ systems.
Coordinating with brain OXT, locally produced OXT also involves the central and peripheral actions of OXT. Disorders in OXT
secretion and functions can cause a series of aberrant social behaviors, such as depression, autism, and schizophrenia as well as
disturbance of nonsocial behaviors/functions, such as anorexia, obesity, lactation failure, osteoporosis, diabetes, and carcinogenesis.
As more and more OXT functions are identified, it is essential to provide a general view of OXT functions in order to explore the
therapeutic potentials of OXT. In this review, we will focus on roles of hypothalamic OXT on central and peripheral nonsocial

functions.

1. Introduction

Recent progress in studying therapeutic potential of hypotha-
lamic nonaneuropeptide oxytocin has resumed our enthusi-
asm of its classical physiological functions. In the hypotha-
lamus, OXT is predominantly expressed in two types of
neurons, that is, magnocellular neurons in the paraventric-
ular (PVN) and supraoptic (SON) nuclei, and parvocellular
neurons in the parvocellular division of the PVN. In mag-
nocellular OXT neurons, OXT and its carrier, neurophysin I,
are packaged in membrane-bound large dense-core vesicles
and transported down the long axons to the nerve endings
in the posterior pituitary or neurohypophysis [1]. In response
to increased activity of OXT neurons, OXT is released from
the neurohypophysis into the blood [2] to act on variety
of peripheral tissues. The magnocellular neurons and the
neurohypophysis that contain OXT and its partner peptide,
vasopressin (VP, antidiuretic hormone) together form the
hypothalamoneurohypophysial system. Lately, OXT is found

to be released into other regions of brain [3-5], likely from the
terminals of the OXT neurons of the parvocellular division of
the PVN and axon collaterals and distal dendrites of magno-
cellular neurons [6]. In addition to the hypothalamic origin,
OXT is also produced in extrahypothalamic regions and
peripheral tissues, for example, the retina, adrenal medulla,
thymus, the pancreas, adipocytes, placenta, amnion, corpus
luteum, interstitial cells of Leydig in the testis, and heart [7].
In mammals, OXT receptor (OXTR) has been identified in
a broad spectrum of tissues, including myoepithelium of the
mammary gland, myometrium of the uterus, endometrium,
decidua, ovary, testis, epididymis, vas deferens, kidney, heart,
thymus, pancreas, and adipocytes as well as the brain and
spinal cord [7-9]. Thus, OXT can function in extensive
central and peripheral sites.

The functions of OXT in the brain and spinal cord cover
a variety of social and nonsocial activities/behaviors [10, 11].
The social behaviors include social memory, attachment,
sexual activity, maternal behavior, aggression, pair bonding,
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and trust. The nonsocial behaviors include brain develop-
ment, learning and memory, feeding, respiration, cardiovas-
cular activity, digestion, energy balance, thermoregulation,
natriuresis, endocrine, immune regulation, pain perception,
tolerance and dependence, autonomous outflow in addition
to its classical role in the lactation, and parturition. Given
the growing publications of OXT effects on these nonsocial
behaviors and numerous recent reviews of social functions of
OXT [12-17], this review constrains its scope to the nonsocial
functions of hypothalamic OXT.

2. Human Development

In the lifetime, OXT is extensively involved in the develop-
ment of brain and peripheral organ systems. In the following,
we will show the functions of OXT in brain and peripheral
organ development, sexual dimorphism, and aging.

2.1. Brain Development. The influence of OXT on brain
development emerges before parturition and peaks during
mental development in adolescence. Around parturition,
OXT has been shown as a messenger between mother and
fetus. Shortly before the delivery, maternal OXT crossing
the placenta reaches the fetal brain and induces a switch
in the action of GABA from excitatory to inhibitory on
fetal neurons [18], possibly due to reduction of intracellular
chloride levels [19]. This action of maternal OXT can increase
the resistance of fetal neurons to hypoxic insults during labor
and in turn create an ideal condition for postpartum brain
development.

Following parturition, OXT becomes an essential tool
for the development of mother-young attachment. In rodent
pups, the first suckling episodes can activate OXT-secreting
system through gastrointestinal signals, which facilitate the
development of a preference for the mother [20, 21]. These
early-life events can exert profound long-lasting effects on
various behaviors such as fear/anxiety, stress responses, and
reproductive functions [22]. OXT deficient mice fail to rec-
ognize familiar conspecifics after repeated social encounters,
which can be restored by central OXT administration into the
amygdala [23].

Learning and memory are important components of the
endocrine. Excessive OXT attenuates memory consolidation
and retrieval and processing of nonsocial stimuli [24]. The
effect of systemically administered OXT upon delay memory
retrieval is probably caused by an OXT-induced decrease in
glucocorticoid release from the adrenal gland [25]. Paradox-
ically, central OXT is a critical mediator of social memory.
Administration of OXTR antagonist into the lateral septum
impaired social memory for both male juveniles and female
adults [26]. This contradiction could be due to the difference
in brain regions that carry the different memories.

In humans, autism is an exemplary disease, largely due
to the insufficiency of OXT or OXT actions [27]. This
could appear as a decrease in plasma OXT and an increase
in ineffective form of OXT derivatives [28], or a genomic
deletion of the gene containing the OXTR gene and an
aberrant methylation of OXTR [29]. Importantly, intranasal
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administration of OXT increases emotion recognition in
children with autism spectrum disorders [30].

2.2. Peripheral Organ Development. OXTR is expressed at
early developmental stages of mammals, such as in human
amniotic fluid cells [31] and cultured mouse embryonic stem
cells [32]. Thus, OXT could participate in the differenti-
ation of the germ stem cell line at the very early stages
of mammalian development [33]. It has been shown that
OXT negatively modulates adipogenesis while promoting
osteogenesis in both human multipotent adipose-derived
stem cells and human bone marrow mesenchymal stromal
cells. Interestingly, OXT can reverse ovariectomy-elicited
bone loss in the mice and reduce marrow adiposity [34].
OXT stimulates the cardiomyogenesis of embryonic stem
cells and adult cardiac stem cells and mediates differentiation
of porcine bone marrow stem cells into cardiomyocytes [35].
OXT also has a promigratory effect on umbilical cord blood-
derived mesenchymal stem cells [36]. Prolonged treatment of
these cells with OXT can significantly increase the expression
of connexin 43, cardiac troponin I, and alpha-sarcomeric
actin when they are cocultured with cardiomyocytes [37].
Thus, OXT is potentially useful to advance embryonic stem
cell development to reverse osteoporosis and repair infarction
damaged cardiac tissue.

2.3. Sexual Dimorphism. Between the SON and PVN, there
is a sexually dimorphic nucleus, the intermediate nucleus.
In adult men, this nucleus is twice as large as in adult
women. In young women, this nucleus shows an initial period
of decreased cell numbers during prepubertal development,
necessary for the formation of sexual dimorphism [38]. In
mouse hypothalamus, numbers of immunostained perikarya,
OXT-immunostained axons, and the amount of OXT in
females are much higher than those in males. In the limbic
system, OXT neurons in the perifornical region, the lateral
hypothalamus, and the ventral ansa lenticularis are mostly
absent in males [39]. Moreover, the expression of OXT bind-
ing sites in the spinal cord dorsal horns and the ventromedial
hypothalamic nucleus also shows the sexual dimorphism
[40]. These dimorphic features possibly contribute to mental
development, especially in the social cognitive domain [41]
as well as gender specific central actions of oxytocin on
reproduction-related functions and behaviors.

2.4. Aging. Elderly individuals have dramatically different
mental and physical features from the young and adults [42],
such as eating and drinking, body-temperature regulation,
sexual behaviors, and autonomic and endocrine responses.
Most of these aging-related functional changes occur when
hypothalamic integration, including the functions of OXT-
secreting system, becomes undependable. As shown in aged
male rats, the number of the OXT neurons and its processes
decreased significantly in the medial and lateral parvocellular
division of the PVN [43]. Consistently, erectile dysfunc-
tion in aged people with Parkinson’s disease is treated by
improving the function of dopamine-OXT pathway [44].
Moreover, the general increase in blood pressure in aged
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people possibly results from decreased OXT-associated vagal
outflows [45, 46] and more frequent partner hugs and the
resultant higher OXT levels are linked to lower blood pressure
and heart rate in premenopausal women [47]. In addition,
age-related physical alterations are associated with locally
produced/acting OXT, since topical OXT application can
reverse vaginal atrophy in postmenopausal women [48]. As
evidence presented above, OXT is nevertheless a pivotal
modifiable factor that can dramatically change the aging
process.

3. Effects on Endocrine Systems

The hypothalamus and pituitary gland are important com-
ponent of the endocrine system and they exert considerable
influence over the functions of other endocrine glands.
The hypothalamus regulates hormonal productions in the
pituitary through releasing various tropic hormones, which
act on the pituitary to secrete a variety of hormones that
regulate growth and development, metabolism, reproductive,
and endocrine functions. Nevertheless, OXT can modulate
endocrine functions through interacting with these brain
endocrine organs and their peripheral targets.

3.1. Pituitary Hormones. The pituitary is divided into three
sections. The anterior lobe or adenohypophysis which
constitutes the majority of the pituitary mass is com-
posed primarily of five hormone-producing cell types:
thyrotropes, lactotropes, corticotropes, somatotropes, and
gonadotropes. These cells secret adrenocorticotropic hor-
mone (ACTH), thyroid-stimulating hormone (TSH), pro-
lactin, growth hormone, and gonadotropins-Luteinizing hor-
mone (LH), and follicle-stimulating hormone (FSH). The
intermediate lobe produces melanocyte-stimulating hor-
mone (MSH) and endorphins, and the posterior lobe secretes
VP and OXT [49, 50]. While magnocellular neurons inner-
vate the neurohypophysis, they also innervate the median
eminence where they can act on the adenohypophysis [51, 52].
OXT can also be transported into the intermediate lobe,
which can be further increased by physiologic stimuli, such
as suckling stimulus [53]. In rat adenohypophysis, there
are receptors for OXT and VP [54] and removal of the
neurointermediate pituitary significantly affects the secretion
of anterior pituitary hormones [55]. Thus, OXT can function
as a hypophysiotropic hormone.

In the endocrine actions, modulatory effects of OXT on
ACTH secretion depend on observational conditions. OXT
increases basal release of ACTH in both male and virgin
female rats by acting on the PVN [56]. In addition, OXT can
reduce cortisol response to stress in individuals with impaired
emotional regulation abilities [57]. Thus, OXT can modulate
ACTH and cortisol secretion to mobilize body function but
curbs its potentially harmful consequence. In addition, OXT
is also found to increase the release of prolactin [58, 59],
a-MSH [60], LH [61], and FSH [62] as well as its own
release [4, 63]. On the contrary, OXT inhibits TSH [64] and
GH [65] release. Thus, OXT can extensively modulate body

functions and behaviors through changing the secretion of
these pituitary hormones.

3.2. Interaction with VP. VP is another major neuropeptide
in the SON and PVN. Classical functions of VP include
controlling the reabsorption of water in the kidneys, increas-
ing arterial blood pressure, and regulating corticotrophin-
releasing hormone (CRH) secretion [66]. In the central
nervous system, functions of VP involve memory formation,
circadian rhythm, aggression of females towards other males,
temperature regulation, partner preference, sexual activity,
and activation of the reward brain circuitry [67, 68]. In
social functions, VP is mainly shown to play a role in male
social behavior and newer studies show also an involvement
in female social behavior [69, 70]. VP is secreted from the
neurohypophysis in response to reductions in plasma volume
and increases in the plasma osmolality as well as stimulations
of many blood-borne factors, such as angiotensin II [71].
Thus, the functions of VP are closely related to OXT functions
although they are sometimes in an antagonistic manner.

The interactions between VP and OXT occur in many
levels and forms. (1) The two neuropeptides are often up- and
down-regulated by the same stimulus. In rats, hemorrhage
and nonhypotensive hypovolemia are known to increase
plasma levels of OXT and VP; arterial hypotension increases
neurohypophysial release of OXT and VP [72]. Chronic
hyponatremia reduces survival of magnocellular VP and
OXT neurons after axonal injury [73]. (2) High concentration
of OXT or VP can, respectively, activate both VP receptors
and OXTR [7]. OXT can increase VP neuronal activity
[74]. (3) OXT and VP share many functions, such as the
antidiuretic effect via increasing aquaporin-2 in the kidney
by OXT [75] and VP [76]. (4) The two hormones have also
antagonistic interactions, such as the vasodilatation by OXT
[77] and vasoconstriction by VP [71]. By coordinating the
secretion and actions of these two neuropeptides in different
spatiotemporal orders, the hypothalamoneurohypophysial
system can highly adapt to the environmental challenges and
keep the homeostasis of internal environment.

3.3. Peripheral Hormones. OXT can modulate peripheral
functions by responsive release from the neurohypophysis
and local sources; in turn, peripheral hormones can also
modulate central OXT release. Examples have been shown
in OXT regulation of the gastrointestinal and myocardial
hormones.

Insulin and cholecystokinin (CCK) are two representa-
tive gastrointestinal hormones. Increase in circulating OXT
reduces insulin secretion [78] whereas intracerebroventricu-
lar OXT causes a rise of insulin levels by activation of vagal
cholinergic neurons innervating pancreatic beta-cells [79]. By
contrast, insulin can alter OXT levels in the hypothalamus
by activating the insulin-regulated aminopeptidase [80, 81].
Similarly, CCK interacts with OXT at many levels. Admin-
istration of OXT increases plasma concentration of CCK
[82]. Brain OXT facilitates CCK-elicited excitation of neurons
within the nucleus of the solitary tract to further reduce meal
size intake [83]. Conversely, peripheral administration of



CCK can selectively activate the hypothalamic OXT neurons
through CCK receptor in rats [84].

In cardiovascular regulation, OXT has close interactions
with atrial natriuretic peptide (ANP) at both the heart and
brain. OXT can directly stimulate ANP release from the
atrium to promote Na" and water excretion, thus reducing
body water retention and suppressing VP secretion [85,
86]. In the hypothalamus, there is also a group of neurons
containing ANP which inhibits VP secretion and promotes
OXT release [87].

The modulation of OXT on peripheral endocrine organ is
achieved through both hormonal role and neural approaches.
For instance, OXT can maintain adrenaline levels directly
by increasing sympathetic nervous tone; lack of OXT results
in lower adrenalin levels [88]. Thus, OXT can modulate
peripheral hormones more flexibly and efficiently.

4. Reproductive Functions

OXT is best known for its roles in parturition and lactation in
females. In fact, other reproductive processes, such as sexual
intercourse and menstrual cycle, are also modulated by OXT.

4.1. Menstrual Cycle. Infemale reproduction, menstrual cycle
is one of the most important indexes of female reproductive
ability. In animal experiments, OXT can modulate estrous
cycle length by influencing follicle luteinization in the ovary
and ovarian steroidogenesis. In the sheep, an increase in
estradiol level causes intermittent increases in the frequency
of the central OXT pulse generator. The high frequency pulses
of OXT initiate subluteolytic levels of uterine prostaglandin
F2oc which triggers a supplemental release of luteal OXT.
Luteal OXT amplifies the secretion of uterine prostaglandin
F2a which initiates luteolysis and causes more luteal OXT
to be secreted [89]. In ovulating women, plasma OXT is
significantly low during the luteal phase in comparison with
both the follicular and ovulatory phases. Thus, plasma OXT
fluctuates throughout the menstrual cycle in normally cycling
healthy fertile women. OXT can advance the LH surge;
conversely, OXTR antagonists inhibit full production of the
LH surge [61]. Thus, the high level of OXT before luteal phase
has a role in the physiological processes of LH regulation;
therefore OXT can modulate ovulation and the ensuing
pregnancy.

4.2. Sexual Activity. Sexual activity is a basic process of repro-
duction, in which the function of OXT has been extensively
studied. Plasma OXT levels increase during sexual arousal
in both women and men and are significantly higher during
orgasm/ejaculation than during prior baseline levels [90]. In
both men and women, there are very high positive correla-
tions between OXT and electromyography intensity prior to
and during orgasm [91], which is regulated by OXT from the
PVN [92]. In the brain, OXT-dopaminergic neural pathways
play a role not only in the erectile function and copulation
but also in the motivational and rewarding aspects of the
anticipatory phase of sexual behavior [93]. The success of sex
depends on a close interaction of OXT with brain serotonin
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[94] and dopamine systems [95]. Deficits in OXT-secreting
system or its interactions with brain amine systems can result
in loss of libido, impotence, and lack of orgasm; conversely,
overactivation of these systems may cause abnormal desire
and multiple orgasms [96]. Postpartum women appear to
experience a decrease in sexual interest possibly as a feature
of a more generalized decrease in amygdala responsiveness
to arousing stimuli, which also relates to the actions of OXT
[97]. Thus, appropriate OXT levels and actions are essential
to maintain the quality of sexual activity.

4.3. Parturition. In all placental mammals studied so far,
including humans, OXT plays an important role in parturi-
tion. This OXT function is restrained by GABA inhibitory
mechanism initially and then by a central opioid inhibitory
mechanism in the hypothalamus; the increased inputs from
birth cannel finally overcome the central inhibitory mecha-
nisms during parturition, which allows increases in circulat-
ing OXT [98]. During labor, OXT can elicit uterine smooth
muscle contraction to facilitate parturition and postpartum
recovery of the uterus [99, 100]. Inappropriate OXT secretion
can cause abnormal uterine contraction and preterm birth,
which is largely attributable to early maturation of OXT-
secreting system in the hypothalamus or excessive produc-
tion of OXT in uterine decidua in late gestation [101, 102].
Thus, despite the relatively normal reproduction in OXT
deficient mice [103] likely due to the compensatory effect of
VP, OXT is nevertheless an essential hormone for normal
parturition.

5. Lactation

As an extension of parturition, lactation is a necessary
process for individual survival in mammals. Lactation is
achieved through the milk-ejection reflex (MER) which
depends on hypothalamic OXT [104, 105]. In the OXT-
deficient/knockout mice, milk ejections are not available for
the offspring [103]. Correspondingly, OXTR knockout mice
exhibited normal parturition but demonstrated defects in
lactation and maternal nurturing [106]; conditional OXTR
knockout dams experienced high pup mortality [107]. In
response to suckling stimulation, neural signals from the
mammary glands and other sensory organs, such as the
gastrointestinal tract and olfactory bulbs, reach the hypotha-
lamus [108] and a synchronization center in the ventropos-
terior hypothalamic area [109]. The synchronization center
activates OXT neurons in the SON and PVN simultaneously
[110], leading to a bolus release of OXT and the ejection of
milk from the mammary glands [111]. It is likely that the
physiological processes that require pulsatile OXT secretion,
such as, orgasm and ejaculation as well as tonic uterine
contraction during parturition, are all under the control of
the same synchronization center. Thus, studying the MER
remains the best model for clarifying the regulation of OXT
secretion.

In parallel with the function in maintaining mother-
infant attachment and the development of mammary glands
[112, 113], breastfeeding is associated with decreased risk
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for many early-life diseases and conditions, including otitis
media, respiratory tract infections, atopic dermatitis, gas-
troenteritis, type 2 diabetes, sudden infant death syndrome,
and obesity. In mothers, breastfeeding can decrease risk for
type 2 diabetes, ovarian cancer, and breast cancer [114, 115].
Moreover, malfunctions of OXT-secreting system can cause
maternal depression as well as lactation failure [116]. Since
OXT is the key for successful lactation [117], further clari-
fication of the regulation of OXT secretion during lactation
has great therapeutic potential for lactation failure of nursing
mothers and associated diseases.

6. Autonomic Functions

The autonomic nervous system or visceral nervous system
is a part of the peripheral nervous system that controls
visceral functions. This system consists of parasympathetic
and sympathetic divisions [118]. The activity of this system
influences heart rate, digestion, respiration rate, salivation,
perspiration, pupil dilation, micturition, sexual arousal, and
vascular tone [119, 120]. Sympathetic and parasympathetic
divisions typically function in opposite but complementary
fashion. In a specific physiological process, the two divisions
are constitutively functioning, while with appropriate stimuli,
each of the two activates alternatively, to achieve homeostasis.
Nevertheless, OXT can modulate their functions through
both central and peripheral OXTR.

OXT modulates autonomous functions partially by neu-
ronal connections between the hypothalamus and autonomic
function-regulating regions [121]. The PVN coordinates auto-
nomic and neuroendocrine systems to maintain homeostasis
and to respond to stress. The PVN projects directly to the
sites that control cardiorespiratory function—the interme-
diolateral cell columns, phrenic motor nuclei in the spinal
cord, rostral ventrolateral medulla, and the rostral nuclei in
the ventral respiratory column in the brainstem. OXT fibers
from the PVN also innervate the locus coeruleus and dorsal
vagal complex in the brainstem [122] as well as lumbosacral
spinal cord to areas involved in sensory processing and
parasympathetic outflow to the uterus [123]. Through these
pathways, OXT is directly involved in the integration of
neuroendocrine and autonomic responses in the periphery
and in the mediation of homeostasis-preserving responses
within the central nervous system itself.

Many effects of OXT-secreting system activation are
associated with selective inhibition or excitation of sympa-
thetic and parasympathetic nervous systems. For instance,
intranasal OXT increases high frequency heart rate vari-
ability, a relatively pure measure of parasympathetic cardiac
control, and decreased preejection period, a well-validated
marker of enhanced sympathetic cardiac control [124]. This
action is likely achieved via both increasing circulating OXT
and activating brain OXT neurons via CSF [125], particularly
those in the parvocellular division of the PVN that is located
immediately lateral to the third ventricle. This possibility
is high, since nasally applied VP causes fourfold increases
in CSF VP levels by 10min [126]. From the PVN, OXT
could activate brainstem vagal neurons but inhibit gastric

acid and insulin secretion, change gastric motility in response
to stomach distention and to elevated osmolality, and block
consumption of toxic foods [127]. Additionally, OXT could
also modulate respiratory, sexual activity, micturition, and
many other peripheral functions in association with the
alteration of autonomic activity [7, 119, 120].

7. Nociception, Analgesia, and Addiction

Nociception or pain sensation is the neural processes of
encoding and processing noxious stimuli. It is the afferent
activity produced in the nervous system by stimuli that
potentially damage tissues. Analgesia is the neural process of
suppressing nociception and pain. By inhibiting the access of
nociception to the thalamus and cerebral cortex, endogenous
analgesia system and analgesic drugs can effectively reduce
pain. In association with analgesia, inappropriate application
of analgesic agents can cause addiction.

The key brain structures relaying nociception are the
periaqueductal gray [128], central nucleus of amygdala [129],
and the nucleus raphe magnus [130]. These structures are
under tonic regulation of OXT. Observations reveal that
pain stimulation induces OXT release in the SON and that
intraventricular injection of OXT antiserum inhibits the pain
threshold increase induced by SON injection of 1-glutamate
sodium [131]. Nociceptive tooth pulp stimulation strongly
elevates mRNA levels of OXT and opiate receptors in rat
brain, which could result in more potent antinociception
[132]. OXT exerts analgesia effects by increasing the release
of opiate peptides including leucine-enkephalin, methionine-
enkephalin, and beta-endorphin in the periaqueductal gray
[131]. Thus, oxytocin might reduce (or attenuate) pain per-
ception.

Substance abuse is also related to the alteration of inter-
actions between OXT and endogenous opiate system. The
common substance of abuse such as alcohol, opioid, cocaine,
and benzodiazepine can influence brain reward, motivation,
memory, and related circuitry directly. OXT is involved in
drug addiction and withdrawal by regulating mesolimbic
dopamine pathways [133]. Endogenous opioids likely reduce
maternal behavior and increase novel exploration during
lactation [134] by reducing OXT secretion [135, 136]. The
inhibition of basal secretion can occur at the level of the
neurosecretory terminals and at the cell bodies of magnocel-
lular cells [137, 138], which occurs during milking but not by
vaginal stimulation [139, 140].

Similar to the effect of opiates, acute alcohol consumption
significantly decreases plasma OXT in nulliparous and lac-
tating women [141]. This inhibition seems due to that ethanol
increases the activity of large conductance, Ca**-activated K*
channels as shown in isolated neurohypophysial terminals
[142]. Ethanol also reduces the duration of single evoked
spikes by a selective inhibition of voltage-gated Ca®" currents
in acutely dissociated supraoptic neurons of the rat [143].

Importantly, OXT can inhibit the action of addic-
tive agents. Examples are acute cocaine-induced locomotor
hyperactivity, exploratory activity, and stereotyped behavior
in rodents [144], development of tolerance to ethanol, and



opiates [145]. Thus, OXT has the potential to reverse the
corrosive effects of long-term drugs abuse on social behavior
and to inoculate against future vulnerability to addictive
disorders.

8. Special Sensory Organs

Many of OXT functions can be conditioned and this is largely
based on the interactions between OXT-secreting system and
specific sensory organs. In functional magnetic resonance
imaging study, it is revealed that robust pup suckling activates
much of the cerebrum, most notably the visual, auditory,
and olfactory cortices [146]. Thus, enhanced sensitivity across
the cortical layer during nursing likely helps the dam to
perceive, process, and remember stimuli critical to the care
and protection of her young. On the contrary OXT release
into the blood can be conditioned to visual, olfactory, or
auditory stimuli associated with suckling and feeding [147].

It is known that SON neurons innervate the olfactory
bulb via axon collaterals [148] and increased olfactory output
increases the activity of supraoptic neurons [149, 150] via
projection from the olfactory bulb to the SON of the rat
[151,152]. Thus, OXT neurons and olfactory neurons can form
a reciprocal neural circuit. In fact, olfactory OXT does play
a critical role in brain function. For instance, vaginocervical
stimulation can promote olfactory social recognition mem-
ory in female rats through the release of OXT [153] where
OXTR is also identified [8, 9]. Moreover, nasal application
of OXT has been associated to improving lactation failure,
autism, schizophrenia, and other aberrant social behaviors
[154-156] bypassing the blood-brain barrier via multiple
approaches [125]. Thus, nasally applied OXT can alter OXT
neuronal activity by activating olfactory system and in turn
OXT release in multiple brain areas to exert therapeutic
effects.

Similarly, OXT effects are also seen in the visualization
and auditory sensation. A single dose of intranasally admin-
istered OXT enhances detection accuracy of briefly presented
emotional stimuli including facial emotion recognition [157],
which is independent of modulations in overt visual attention
[158]. OXT immunoreactive perikarya and/or fibers have
been found within several nuclei in the auditory brain stem
including the medial and ventral nuclei of the trapezoid body
and in the cochlear nucleus [159]. OXTR distributions in
singing mice support involvement of OXT system in vocal
communication [160]. Moreover, there are strong associa-
tions between OXT and social processing to the auditory
and vocal domain [161]. Thus, OXT could also modulate
vocalization and hearing processes.

The effect of visual and auditory stimuli on conditioned
MER during suckling has been studied in normal and
pinealectomized lactating rats. The photic and auditory
stimuli were applied to each mother for 10s every 20s during
the 30 min suckling period. Both stimuli inhibit milk ejection
without altering the nursing behavior. In mothers kept in
complete darkness or in which the visual stimulus shone
continuously during the suckling period, milk ejection was
not affected [162]. It seems that the pineal gland, which
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receives projection of retina via suprachiasmatic nucleus,
mediates an inhibitory visual reflex acting on OXT release
and milk ejections.

OXT can also modulate gustation. Absence of OXT
in mice can increase daily intake of palatable sweet and
nonsweet solutions of carbohydrate by selectively blunting
or masking processes that contribute to postingestive satiety
[163]. OXTR is expressed in taste buds throughout the oral
cavity in mice and effects of OXT on taste tissue are delivered
through the circulation [164]. OXT-responsive taste bud
cells modulate taste signaling and afferent sensory output,
which complements central pathways of appetite regulation
that employ circulating homeostatic and satiety signals. The
taste signals are likely delivered to the parabrachial nucleus
through neurons in the nucleus of the solitary tract, which
could mediate lithium chloride activation of OXT cells in the
PVN and SON and the resultant aversive responses [165]. It
is predictable that further study of the interactions between
OXT-secreting system and these special sensory systems will
lead to novel therapies that can dramatically improve the
performance of OXT-secreting system as well as the quality
of these special sensations.

9. Immune System

Immune system is essential for self-defense through destroy-
ing pathogens, neutralizing toxins, and cleaning dead cells
as well as cytokine production and actions. OXT interacts
with immune system during its development, homeostasis,
and response to injuries.

The interactions between the two systems have been seen
in the following processes. (1) The OXT-secreting system
and immune system cannot be separated histologically;
they merge together to form a single immunoneuroen-
docrine system to carry out both the endocrine and immune
functions. For instance, hypothalamic and/or pituitary cells
produce many cytokines, such as interleukin (IL)-1, IL-2,
IL-6, interferon-y, and transforming growth factor-f [166].
By contrast, OXT gene and OXTR are expressed in the
thymus [167] and monocytes and macrophages [168]. (2)
OXT is the target of immunological cytokines and OXT can
also modulate the activity of immune organs. On the one
hand, prostaglandin E, [169], IL-2 [170], and IL-6 [171] can
increase the activity of OXT neurons in the SON and PVN
or promote OXT secretion into the blood. On the other
hand, OXT significantly increases peripheral blood mononu-
clear cell blastic response to phytohemagglutinin [172] and
decreases both superoxide production and release of proin-
flammatory cytokines from OXTR-bearing monocytes and
macrophages [168]. (3) OXT is involved in many immune
diseases and has great therapeutic potentials in relieving
immune injury. For example, neuronal IL-18 colocalizing
with OXT reduces significantly in multiple sclerosis [173].
Peripheral OXT administration can inhibit atherosclerotic
lesion development and adipose tissue inflammation by sig-
nificantly reducing IL-6 production [174]. Continuous OXT
delivery reduces inflammation and apoptosis in infarcted and
remote myocardium [175], thereby improving functions of
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injured heart. Thus, OXT can provide great therapeutic ben-
efit in diminishing inflammation while increasing immune
responses through interacting with the immune system in
this emerging immunoneuroendocrine system.

10. Metabolism and Energy Balance

Metabolism is chemical reactions that occur in the cells
of living organisms to sustain life, including anabolism
and catabolism. OXT modulates lipid, protein, and sugar
metabolism by modulation of appetite and satiety, enzyme
activity, cellular signals, secretion of metabolic hormones,
and energy consumption [176].

OXT acts as a mediator of general and carbohydrate-
specific satiety and regulator of body weight. OXTR knock-
down mice show obesity and dysfunction in body tempera-
ture control when exposed to cold [177]. OXT also acts as a
homeostatic inhibitor of consumption, capable of mitigating
multiple aspects of ingestive behavior and energy metabolism
[127]. The metabolic functions of OXT are related to its
direct effect on adipose to decrease body weight gain and
increase adipose tissue lipolysis and fatty acid beta-oxidation
as well as to reduce glucose intolerance and insulin resistance
[178]. Consistently, subchronic treatment of rats with OXT
results in improved adipocyte differentiation and increased
gene expression of factors involved in adipogenesis. This
effect is related to increases in fatty acid binding protein,
peroxisome proliferator-activated receptor gamma, insulin-
sensitive glucose transporter 4, leptin, and CD31 mRNA levels
(179].

Metabolic effects of OXT are closely related with several
peripheral hormones. For instance, OXT can strengthen the
satiety effect of CCK and bombesin-related peptides [88].
Adiponectin, hormone derived from adipocytes, hyperpolar-
izes OXT neurons in the PVN to modulate energy home-
ostasis and autonomic function. Thus, adiponectin plays
specific roles in controlling the excitability of OXT neurons in
regulating metabolic activity [180]. As OXT can dramatically
change the energy balance, it is predictable that OXT could
effectively modulate the pathogenesis of diabetes mellitus,
atherosclerosis, and other metabolic diseases.

11. Concluding Remarks

Reviewing the functions of OXT and interactions between
OXT and its targets, the most important actions of oxytocin
are not at its effects on individual physiological processes but
making whole organism in a fitting condition. This fitting
function allows the body to maximize its potential to meet the
demand of physiological processes and dismiss the adverse
insults. We have no doubt in that properly using OXT can
treat and even cure many central and peripheral diseases,
while inappropriate OXT secretion can also be corrected
through regulating the activity of its peripheral modula-
tors, such as the olfactory bulb. Nevertheless, mechanisms
underlying these functions remain to be further explored
based on what we have known from genomic processes
[181], neurochemical regulation of oxytocin neuronal activity

[105, 182, 183], and OXTR signaling [7, 184], to behavioral
establishment [185, 186]. We are full of confidence that, with
further study of OXT functions and its regulation, OXT
therapy will be in the spotlight again in our exploration of
the approaches to enhance the quality of human life [187].
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